Trang chủ   >>   Lớp 12   >>   Toán
SGK Giải Tích 12

SGK Giải Tích 12

ISBN: 9786040141798

Tác giả: Trần Văn Hạo, Vũ Tuấn, Lê Thị Thiên Hương, Nguyễn Tiến Tài, Cấn Văn Tuất

Nhà xuất bản: NXB Giáo Dục Việt Nam

Giải bài 3 trang 10 SGK Giải tích 12

Chứng minh rằng hàm số \(y=\frac{x}{x^{2}+1}\) đồng biến trên khoảng (-1;1) và nghịch biến trên các khoảng \((-\infty; -1)\) và \((1 ; +\infty)\)

Phúc Lâm
5 0
1

Tìm tập xác định của hàm số \(y=\frac{x}{x^{2}+1}\)

Tập xác định: \(D=\mathbb{R}\)

2

Tính đạo hàm y' và giải phương tình y'=0

\(y' = \left( {\frac{x}{{{x^2} + 1}}} \right)' = \frac{{x'({x^2} + 1) - ({x^2} + 1)'x}}{{{{({x^2} + 1)}^2}}}\)

\(= \frac{{{x^2} + 1 - 2{x^2}}}{{{{({x^2} + 1)}^2}}} = \frac{{1 - {x^2}}}{{{{({x^2} + 1)}^2}}}.\)

\(y' = 0 \Leftrightarrow \frac{{1 - {x^2}}}{{{{({x^2} + 1)}^2}}} \Leftrightarrow 1 - {x^2} \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 1 \end{array} \right.\)

Với \(x=-1\Rightarrow y=-\frac{1}{2}\)

Với \(x=1\Rightarrow y=\frac{1}{2}\)

3

Lập bảng biến thiên

Bảng biến thiên:

Bảng biến thiên bài 3 trang 10 SGK Giải tích 12

Kết luận

Từ bảng biến thiên ta thấy: Hàm số đồng biến trên khoảng \((-1; 1)\); nghịch biến trên các khoảng \((-\infty; -1), (1; +\infty).\)

Đánh giá
Báo sai phạm

Bạn có phương pháp giải hay hơn?

Nếu thấy hay, hay ủng hộ ngay!