ISBN: 9786040141798
Tác giả: Trần Văn Hạo, Vũ Tuấn, Lê Thị Thiên Hương, Nguyễn Tiến Tài, Cấn Văn Tuất
Nhà xuất bản: NXB Giáo Dục Việt Nam
Chứng minh rằng hàm số \(y=\frac{x}{x^{2}+1}\) đồng biến trên khoảng (-1;1) và nghịch biến trên các khoảng \((-\infty; -1)\) và \((1 ; +\infty)\)
Tìm tập xác định của hàm số \(y=\frac{x}{x^{2}+1}\)
Tập xác định: \(D=\mathbb{R}\)
Tính đạo hàm y' và giải phương tình y'=0
\(y' = \left( {\frac{x}{{{x^2} + 1}}} \right)' = \frac{{x'({x^2} + 1) - ({x^2} + 1)'x}}{{{{({x^2} + 1)}^2}}}\)
\(= \frac{{{x^2} + 1 - 2{x^2}}}{{{{({x^2} + 1)}^2}}} = \frac{{1 - {x^2}}}{{{{({x^2} + 1)}^2}}}.\)
\(y' = 0 \Leftrightarrow \frac{{1 - {x^2}}}{{{{({x^2} + 1)}^2}}} \Leftrightarrow 1 - {x^2} \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 1 \end{array} \right.\)
Với \(x=-1\Rightarrow y=-\frac{1}{2}\)
Với \(x=1\Rightarrow y=\frac{1}{2}\)
Lập bảng biến thiên
Bảng biến thiên:
Từ bảng biến thiên ta thấy: Hàm số đồng biến trên khoảng \((-1; 1)\); nghịch biến trên các khoảng \((-\infty; -1), (1; +\infty).\)
Bạn có phương pháp giải hay hơn?