ISBN: 9786040141798
Tác giả: Trần Văn Hạo, Vũ Tuấn, Lê Thị Thiên Hương, Nguyễn Tiến Tài, Cấn Văn Tuất
Nhà xuất bản: NXB Giáo Dục Việt Nam
Chứng minh các bất đẳng thức sau:
a) \(\tan x > x (0 < x <\frac{\pi }{2} )\)
b) \(\tan x > x +\frac{x^3}{3} (0 < x < \frac{\pi }{2})\)
Câu a: Chứng minh bất đẳng thức sau \(\tan x > x (0 < x <\frac{\pi }{2} )\)
Để chứng minh \(tanx >x\) với mọi \(0 < x < \frac{\pi }{2}\) ta chứng minh tanx - x > 0 với mọi \(0 < x < \frac{\pi }{2}\)
Trước tiên ta cần kiểm tra xem có tồn tại giá trị nào của x đề tanx-x=0 hay không, mà trước hết ta cần thử với hai giá trị là x=0 và \(x=\frac{\pi}{2}.\)
Dễ thấy: \(tan(0)-0=0.\)
Khi đó ta tiến hành mở rộng khoảng đang xét thành nửa khoảng \(\left [0;\frac{\pi}{2} \right )\)
Xét hàm số f(x)= tanx–x liên tục trên nửa khoảng \(\left [0;\frac{\pi}{2} \right )\)
\(f'(x) = \frac{1}{{{{\cos }^2}x}} - 1 > 0\) với mọi \(x\in\left ( 0;\frac{\pi}{2} \right )\)
\(f'(x)=0\Leftrightarrow x=0\)
Bảng biến thiên:
Hàm số đồng biến trên \(\left [0;\frac{\pi}{2} \right )\)
Vậy với \(0 < x < \frac{\pi }{2}\) ta có \(f\left( x \right) > f\left( 0 \right) = 0 \Rightarrow tanx > x\)
Câu b: Chứng minh bất đẳng thức sau \(\tan x > x +\frac{x^3}{3} (0 < x < \frac{\pi }{2})\)
Xét hàm số \(g(x) = \tan x - x - \frac{{{x^3}}}{3}\) liên tục trên \(\left[ {0;\frac{\pi }{2}} \right)\) có đạo hàm:
\(g'(x) = \frac{1}{{{{\cos }^2}x}} - 1 - {x^2} = {\tan ^2}x - {x^2}\)
\(= (tanx - x)(tanx + x) > 0,\,\forall x \in \left( {0;\frac{\pi }{2}} \right)\) (Theo câu a)
\(g'(x)=0\Leftrightarrow x=0.\)
Bảng biến thiên:
Vậy hàm số đồng biến trên \(\left[ {0;\frac{\pi }{2}} \right)\)
Vậy với \(0 < x < \frac{\pi }{2}\) ta có \(g\left( x \right) > g\left( 0 \right) \Rightarrow tanx > x + \frac{{{x^3}}}{3}\) với mọi \(x\in\left ( 0;\frac{\pi}{2} \right )\).
Bạn có phương pháp giải hay hơn?