Trang chủ   >>   Lớp 12   >>   Toán
SGK Giải Tích 12

SGK Giải Tích 12

ISBN: 9786040141798

Tác giả: Trần Văn Hạo, Vũ Tuấn, Lê Thị Thiên Hương, Nguyễn Tiến Tài, Cấn Văn Tuất

Nhà xuất bản: NXB Giáo Dục Việt Nam

Giải bài 6 trang 44 SGK Giải tích 12

Cho hàm số \(y=\frac{mx-1}{2x+m}\)

a) Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên mỗi khoảng xác định của nó

b) Xác định m để tiệm cận đứng đồ thị đi qua \(A(-1 ; \sqrt{2})\)

c) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2

Thu Hiền
5 0
1

Câu a:

Xét hàm số \(y=\frac{mx-1}{2x+m}\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{m}{2}} \right\}\)

2

\(y' = \frac{{{m^2} + 2}}{{\left( {2x + m} \right)}} > 0,\forall m\) và \(\forall x \in \mathbb{R}\backslash \left\{ { - \frac{m}{2}} \right\}.\)

Kết luận

Vậy hàm số luôn đồng biến trên các khoảng \(\left( { - \infty ; - \frac{m}{2}} \right)\) và \(\left( { - \frac{m}{2}; + \infty } \right).\)

Đánh giá
Báo sai phạm
Nguyen Thu
5 0
1

Điều kiện đề hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có tiệm cận đứng là:

\(\left\{ \begin{array}{l} c \ne 0\\ ad - bc \ne 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} c = 2 \ne 0\\ {m^2} + 2 \ne 0,\forall m \end{array} \right.\) 

(luôn đúng).

2

Câu b:

Ta có: 

\(\mathop {\lim y}\limits_{x \to {{\left( { - \frac{m}{2}} \right)}^ + }} = \mathop {\lim y}\limits_{x \to {{\left( { - \frac{m}{2}} \right)}^ + }} \frac{{mx - 1}}{{2x + m}} = - \infty ;\)

\(\mathop {\lim y}\limits_{x \to {{\left( { - \frac{m}{2}} \right)}^ - }} = \mathop {\lim y}\limits_{x \to {{\left( { - \frac{m}{2}} \right)}^ - }} \frac{{mx - 1}}{{2x + m}} = + \infty\)

Nên đường thẳng \(x=-\frac{m}{2}\) là tiệm cận đứng của đồ thị hàm số

3

Tiệm cận đứng đi qua \(A\left( { - 1;\sqrt 2 } \right)\) khi và chỉ khi: \(- \frac{m}{2} = - 1 \Leftrightarrow m = 2\)

Kết luận

Vậy với m = 2 thì tiệm cận đứng đồ thị đi qua \(A(-1 ; \sqrt{2})\)

Đánh giá
Báo sai phạm
Thảo Nguyên
5 0
1

Câu c:

Với m = 2, ta có hàm số \(y = \frac{{2x - 1}}{{2x + 2}}\)

Tập xác định \(D = \backslash \left\{ { - 1} \right\}\)

2

Tiệm cận:

\(\mathop {\lim y}\limits_{x \to {{\left( { - 1} \right)}^ - }} = \mathop {\lim y}\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{2x - 1}}{{2x + 2}} = + \infty ;\)

\(\mathop {\lim y}\limits_{x \to {{\left( { - 1} \right)}^ + }} = \mathop {\lim y}\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{2x - 1}}{{2x + 2}} = - \infty\) 

Nên đồ thị hàm số nhận đường thẳng x = -1 làm tiệm cận đứng

\(\mathop {\lim y}\limits_{x \to - \infty } = \mathop {\lim y}\limits_{x \to - \infty } \frac{{2x - 1}}{{2x + 2}} = 1;\)

\(\mathop {\lim y}\limits_{x \to + \infty } = \mathop {\lim y}\limits_{x \to + \infty } \frac{{2x - 1}}{{2x + 2}} = 1\)

Nên đồ thị hàm số nhận đường thẳng y=1 làm tiệm cận ngang

Đạo hàm: \(y' = \frac{6}{{{{(2x + 2)}^2}}} > 0,\forall x \ne - 1\)

3

Bảng biến thiên:

Bảng biến thiên bài 6 trang 44 SGK Giải tích 12

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right).\)

Hàm số không có cực trị.

4

Đồ thị:

Đồ thị hàm số nhận điểm I(-1;1) làm tâm đối xứng.

Đồ thị hàm số cắt trục Ox tại \(\left ( \frac{1}{2};0 \right )\); cắt Oy tại \(\left ( 0;-\frac{1}{2} \right )\).

Đồ thị hàm số đi qua điểm \(\left ( -2;\frac{5}{2} \right )\).

Đồ thị của hàm số:

Đồ thị hàm số bài 6 trang 44 SGK Giải tích 12

Kết luận

Vậy đồ thị được vẽ như trên

Đánh giá
Báo sai phạm

Bạn có phương pháp giải hay hơn?

Nếu thấy hay, hay ủng hộ ngay!